Evoluţia Universului

Este relativ cunoscut, chiar și în mediul non-academic, faptul că universul a început cu o perioada de expansiune extremă, de inflație cosmică, denumită Big Bang. Totuși, acest model este greșit! Formarea universului constă din două perioade care trebuie delimitate foarte bine: perioada de inflație cosmică și apoi Big Bangul.

Inflația din universul timpuriu nu reprezintă Big Bangul, ci îl precede, creând condițiile necesare pentru Big Bang. Pe scurt, diferența dintre perioada inflaționară a universului și Big Bang este diferența de energie a expansiunii. În perioada inflaționară, rata de expansiune a universului observabil a fost incredibil de mare, de la o dimensiune de ordinul a 10-30 m până la dimensiuni de ordinul a 10-1 m, în 10-27 secunde. Pe de altă parte, Big Bang reprezintă expansiunea universului după perioada de inflație.

Clic pe imagine pentru o rezoluţie mai bună.


Dat fiind că Pământul se află la distanțe diferite de Soare pe timpul anului, răspunsul corect este: orbita Pământului în jurul Soarelui este o elipsă, pentru că nu este un cerc perfect. Dar dacă am desena pe o bucată de hârtie orbita reală (așa cum este prezentată în imaginea de mai jos), ar fi foarte greu să observați că nu este un cerc perfect.

Distanța la care se află Luna față de Pământ variază pe timpul rotației sale în jurul planetei noastre. O distanță menționată de astronomi este 384.400 km, dar, după cum veți putea în videoclipul de mai jos, distanța poate fi mai mică ori mai mare.

Luna este înclinată cu 1,5° în raport cu orbita sa în jurul Soarelui, prin urmare nu există, ca pe Terra, anotimpuri.


Deplasarea sistemului solar în stilul „vortex”...

Un videoclip urcat pe YouTube în 2012, cu nu mai puțin de 6,4 milioane de vizualizări, ne spune că ce știm despre sistemul nostru solar, adică imaginea unui sistem solar (relativ) plat, cu planetele aliniate pe (aproximativ) același plan, este greșită! În fapt sistemul solar ar fi un fel de vortex, cu Soarele „zburând” vijelios prin univers, cu planetele abia prinzându-l din urmă, capturate în câmpul gravitațional al astrului.

Videoclipul este promovat și de Google (unde, probabil, nu și-a pus niciodată nimeni problema asta), fiind al doilea rezultat la diverse căutări clasice, cum ar fi „solar system motion”.

Dar această înțelegere este greșită. Sunt mai mulți fizicieni care au scris despre acest videoclip, arătând că interpretarea este greșită, dar nu am găsit nicio explicație care să arate care este eroarea făcută de creatorul videoclipului. Și probabil acesta este motivul principal pentru care și astăzi videoclipul primește credit de la mulți urmăritori: nu e clar ce e greșit.


Clic dreapta - View image (pentru o rezoluţie superioară)

Aceste coloane de gaz pe care le puteţi vedea în imaginea NASA din 2014 se află în centrul Nebuloasei Vulturul (o nebuloasă este un uriaș nor de gaz interstelar și silicați în formă de praf interstelar), care este situată într-unul dintre braţele Căii Lactee, la circa 7 mii de ani-lumină de noi. În Nebuloasa Vulturul au loc procese de formare de stele noi, acesta fiind şi motivul pentru care imaginea a primit denumirea de "Coloanele creaţiei" (eng. The Pillars of Creation).Fotografia a fost creată pe baza a trei imagini originale: una pe baza luminii emise de oxigen (albastrul din imagine), una pe baza luminii emise de hidrogen (verde) şi una pe baza luminii emise de sulf (roşu).

Tocmai ce am celebrat trecerea unui nou an. Cu alte cuvinte, parcurgerea unei curse complete a planetei noastre, Terra, în jurul stelei din mijlocul sistemului nostru solar. Desigur, fiecare planetă are propria sa mișcare de revoluție, așadar „anul” pe alte planete are altă durată. Iată ce se întâmplă în univers într-un an pământean.


credit: ck12.org

Trebuie să începem prin a spune că mecanismul de producere a mareei, deși, în principiu simplu, este unul complicat atunci când vrem să explicăm în detaliu ce se întâmplă. Aceste complicații, pe care le vom descrie în acest articol, fac ca majoritatea explicațiilor pe care le găsiți pe Internet să fie greșite ori cel puțin incomplete. Deşi ne vom referi în acest articol la modul în care sunt generate mareele pe Terra, acelaşi mecanism este prezent între alte corpuri cereşti şi explică, printre altele: vulcanii de pe satelitul natural al planetei Jupiter, Io, de ce Luna ne arată aceeaşi faţă, de ce Pământul încetinește în mișcarea de rotație în jurul propriei axe şi de ce galaxii mari pot rupe galaxii mai mici.

Este unul dintre lucrurile pe care le știm cu siguranță: Soarele este galben. Dar este galben? Nu, nu este. În fapt Soarele, văzut din spațiu, este alb. Și are sens să fie așa, de vreme ce lumina solară reprezintă chiar definiția luminii albe, căci conține radiație electromagnetică de diferite frecvențe, asociate diferitelor culori ale luminii vizibile (Citește mai mult: Spectrul electromagnetic).

Bun, Soarele este alb. De ce-l vedem galben? Răspunsul pe care o să-l găsiți cel mai adesea este următorul: pentru că atmosfera terestră reflectă radiația solară asociată culorii albastre, iar această împrăștiere a fotonilor „albaștri” dă nuanța albastră cerului și face ca Soarele să pară galben.

Problema este că această opinie nu este, în fapt, împărtășită de mulți astronomi. Sunt mai multe explicații posibile, pe care le vom menționa imediat, dar trebuie știut că faptul că percepem Soarele ca fiind galben este considerat de mulți astronomi ca find un paradox, „Paradoxul Soarelui galben”.


Clic pe imagine pentru o rezoluţie superioară

La formarea sistemului nostru solar steaua din centrul acestuia, Soarele, a capturat aproape toată materia. Soarele conţine 99,8 din masa sistemului solar. Opt planete mari, planetele pitice, sateliții naturali ai planetelor, nenumărați asteroizi, sute sau mii de comete de comete, gaz şi praf cosmic, toate constituie nu mai mult de 0,2%.

Iată mai jos o imagine în care principalele corpuri cerești din sistemul nostru solar sunt comparate, din punct de vedere al mărimii.

Apoi, în următoarea imagine, puteți vedea care sunt distanțele dintre corpurile cerești din sistemul nostru solar, de asemenea, la scară.

În fine, în ultima imagine din articol, veți putea vedea câtă lumină solară ajunge la planetele sistemului solar.

În acest fel, credem, vă puteți o forma mai aproape de realitate despre dimensiunea enormă a sistemului solar, despre distanțele colosale care separă corpurile cerești din acesta și despre locul privilegiat pe care-l Terra în acest joc cosmic.

Pe 19 iulie 2013 Pământul a fost fotografiat din două zone ale sistemului solar, din apropierea planetei Mercur și a gigantului de gaz Saturn.

În imaginea din stânga, Pământul este punctul albastru pal, chiar sub inelele lui Saturn, fotografiat de nava spațială Cassini, orbitând la acea dată Saturn.

În partea dreaptă, sistemul Pământ-Lună este văzut pe fundalul întunecat al spațiului, fotografiat de naveta spaţială Messenger, aflată pe orbita planetei Mercur.

Toţi cititorii acestui articol ştiu că Pământul are un satelit natural, Luna, care are un diametru de 3.474 km (Terra are diametrul de 12.742 km). Dar în sistemul nostru solar sunt 8 planete: Mercur, Venus, Pământ, Marte, Jupiter, Saturn, Uranus şi Neptun. Plus alte cinci planete pitice. Câţi sateliţi naturali sunt în total? Vă propunem să-i numărăm, vorbind despre fiecare planetă în parte.


Aceste imagini arată creşterea treptată a calităţii observării radiaţiei Lunii în raze gama, surprinse de Telescopul Spațial de Raze Gama Fermi al NASA. Din 5 în 5 grade, imaginea este centrată pe Lună și surprinde raze gama cu o energie ce depășește 31 de milioane de electronvolţi sau, altfel spus, este de 10 milioane de ori mai mare decât cea a luminii vizibile. La aceste energii, Luna este, de fapt, mai strălucitoare decât Soarele. Culorile mai strălucitoare indică un număr mai mare de raze gama. Timpul de expunere mai mare, variind de la 2 la 128 de luni (10,7 ani), a îmbunătățit imaginea.
Credit : NASA/DOE/Fermi LAT Collaboration

Această ciudată, infernală strălucire ce vine dinspre Lună ar putea părea ireală în această imagine, deoarece ochii noștri nu o pot percepe. Totuși, instrumentele care detectează raze gama ne spun că este reală. Fiind mai mult decât o aglomerare de pixeli roși, această imagine este o dovadă clară că ochiul uman nu poate percepe decât o mică parte din ceea ce se petrece în univers.

Aceasta ne mai amintește și de faptul că orice om ce va vizita Luna va trebui protejat de radiațiile de energie înaltă.

Deși pare mai mult o vietate microscopică decât un corp cosmic, NGC 2022 nu este cu siguranță din categoria algelor sau meduzelor minuscule. În schimb, este o mare aglomerare de gaz în spațiu, gaz expulzat de o stea care se apropie de sfârșitul vieții sale. Steaua este vizibilă în centrul norului de gaz, strălucind printre particulele de gaz.

 

Răspunsul la această întrebare ar putea fi unul surprinzător de scurt: acreția. Acreția este procesul prin care gravitația face ca materia dintr-un nor de gaz, de praf sau, așa cum se întâmplă de cele mai multe ori, din ambele, să colapseze. Înainte de a ne imagina ce se petrece cu un nor uriaș de gaz în momentul în care începe să colapseze, ar trebui să înțelegem ce se întâmplă când două aglomerări de gaz se ciocnesc una de alta.


Istoria universului. credit: NASA / CXC / M. Weiss

Universul evoluează, iar această evoluție a universului, în ansamblul său, își va pune amprenta, decisiv, inclusiv asupra vieții pe Terra. Universul de astăzi este diferit de cel de ieri. Deși diferențele sunt imperceptibile la scară umană, în timp aceste diferențe ajung să fie importante.

Universul se află în expansiune, ceea ce înseamnă că distanțele dintre structurile cosmice mari se măresc cu fiecare clipă, dar și că densitatea materiei scade. Pe măsură ce universul devine mai mare, importanța radiației, a materiei și a energiei întunecate în influenţarea sorţii universului se schimbă. Temperatura universului scade, pe măsură ce lungimea de undă a radiației cosmice crește. Ceea ce vedem pe cer va fi, de asemenea, afectat, dat fiind că galaxiile pe care le vedem astăzi se depărtează rapid de galaxia noastră şi unele de altele, iar cerul nopții va deveni, încet, încet, din ce în ce mai puțin înstelat.


Structura la scară mare a universului. Filamente şi viduri cosmice

Distanţele dintre galaxii sunt de multe ori incredibil de mari: de miliarde de ani-lumină. Când vorbim despre spaţiul intergalactic, vorbim de regulă de spaţiu gol, de lipsa materiei. Dar stau aşa lucrurile în realitate? Chiar este spaţiul intergalactic lipsit de materie?


Omul pe Lună. Imagini de pe timpul misiunii Apollo 12

Ne imaginăm că pentru deplasări interplanetare avem nevoie de navete spaţiale masive şi scumpe, dar Luna schimbă lucrurile. O navetă spaţială lansată de pe Lună nu are nevoie de motoare mari; chiar şi navete spaţiale mici pot călători prin sistemul solar în mod eficient.

Ar trebuie să mergem pe Lună pentru că, dacă umanitatea vrea să exploreze spaţiul cosmic, Luna va fi un centru major de transport şi industrial în relaţia cu Terra. Cea mai mare dificultate în ce priveşte călătoriile spaţiale nu este spaţiul, ci Pământul, iar Luna este diferită.

Imaginile pe care le-ai văzut cu suprafaţa lunară arată că Luna este un loc teribil. Dar vom merge acolo doar pentru a pleca mai departe.

 

Priviţi imaginea de mai sus. Ce vă spune? Ce înţelegeţi din ea, dincolo de plăcerea estetică a contemplării? În parte, ceea ce vedeţi este o operă de artă (cum sunt multe dintre imaginile cosmice), rezultatul măiestriei "graficienilor spaţiali", cei care lucrează pentru a asambla semnalele captate de către telescoape şi transformarea acestora în imaginile pe care le vedem afişate pe site-urile agenţiilor spaţiale ale lumii.

Dar astronomii nu doar fotografiază cerul, ci interpretează ceea ce văd şi acumulează continuu cunoaştere din ceea ce observă.

Universul, imediat după Big Bang, era un loc... aglomerat. Au apărut particulele elementare, cum ar fi quarcurile (care formează protonii şi neutronii din nucleul atomilor) ori electronii. Protonii şi neutronii au format primele nuclee, pregătind terenul pentru primele elemente. Cum ştim toate acestea? Prin munca cercetătorilor în domeniul fizicii. Aceştia au creat ipoteze şi teorii privind evoluţia universului şi au efectuat experimente pentru a testa şi valida aceste teorii (folosind acceleratoare de particule, telescoape din ce în ce mai performante şi sateliţi). Ca urmare, avem astăzi o idee destul de solidă cu privire la ce s-a întâmplat imediat după naşterea universului. Iată povestea pe scurt...

 

Atunci când admirăm albastrul cerului, privind către Soare, sistemul solar pare o structură cristalină, dar realitatea este mult mai... aglomerată. NASA, care contorizează numărul asteroizilor, a identificat până astăzi aproape 800 de mii de asteroizi (795.893). Dar numărul real este mult mai mare... După cum puteţi vedea în imaginea de mai sus şi în videoclipul de mai jos, Terra se află într-o zonă înţesată cu asteroizi.


Clic dreapta - View image (pentru o rezoluţie superioară)

Dacă aţi citit cele două părţi anterioare ale articolului (1, 2) probabil înţelegeţi altfel această imagine, cunoscută sub denumirea de "Coloanele creaţiei", şi nu este, ca pentru mulţi, doar un plăcut amestec de culori pe ecran.
Aceste coloane de gaz pe care le puteţi vedea în imaginea NASA din 2014 se află în centrul Nebuloasei Vulturul (o nebuloasă este un uriaș nor de gaz interstelar și silicați în formă de praf interstelar), care este situată într-unul dintre braţele Căii Lactee, la circa 7 mii de ani-lumină de noi. În Nebuloasa Vulturul au loc procese de formare de stele noi, acesta fiind şi motivul pentru care imaginea a primit denumirea de "Coloanele creaţiei" (eng. The Pillars of Creation).
Fotografia a fost creată pe baza a trei imagini originale: una pe baza luminii emise de oxigen (albastrul din imagine), una pe baza luminii emise de hidrogen (verde) şi una pe baza luminii emise de sulf (roşu).

 

După cele două articole anterioare, în care am vorbit despre 1. crearea și evoluția galaxiilor și 2. crearea și evoluția marilor structuri ale universului (roiuri și super-roiuri de galaxii, filamente și viduri cosmice),  iată, pe scurt, istoria evoluția universului, în care condensăm tot materialul prezentat anterior, într-o abordare integrată.

Inițial, distribuția materiei (luminoase și întunecate) era aproape perfect omogenă. Acest ”aproape” este cheia. Din loc în loc erau aglomerări de materiei (de ambele tipuri), așadar zone cu densitate un pic mai mare decât media.


 


OK, conținutul site-ului a fost și va rămâne gratuit,
dar chiar ne-ar ajuta dacă ne-ai sprijini cu
o donaţie.


PayPal ()


Contact
| T&C | © 2020 Scientia.ro