Materia curbează spaţiu-timpul, iar spaţiu-timpul curbat dictează mişcarea materiei în univers. credit: LIGO/T. Pyle

Un record incredibil a fost obținut recent de un grup de cercetători coordonați de Jun Ye de la institutul american JILA, care au reușit să măsoare diferențe de timp cu ceasuri atomice pe distanța de 1 mm în câmpul gravitațional terestru, confirmând teoria relativității generale.

 
Structura internă a neutronului (reprezentare artist)
Credit: Xiaorong Zhu, University for Science and Technology, China

Neutronii, particule care fac parte din nucleele atomilor, au o structură complexă, care este studiată în diverse experimente în lumea întreagă. Recent, proiectul colaborativ BESIII (Beijing Spectrometer III), derulat în China, a reușit să efectueze măsurători asupra structurii electromagnetice a neutronilor cu o precizie extrem de mare, care arată cât de complexă este această particulă. De asemenea, BESIII a clarificat misterul interacțiunii foton-neutron care durează de mai bine de 20 de ani.


În imagine: Cassiopeia A - rămășițele unei supernove în constelația Cassiopeia

Un nou studiu arată că stelele neutronice ar putea să ne ofere informaţii despre materia întunecată, acestea reprezentând adevărate detectoare de materie întunecată, acumulând în interior această materie stranie.

 

Să fim martorii descoperirii unei noi fizici la LHCb / CERN? Cercetătorii încearcă să descopere semnale ale unei noi fizici, dincolo de teoria așa-numitului „model standard al particulelor elementare”. În cadrul proiectului de cercetare LHCb de la CERN s-au măsurat dezintegrări ale unor particule (mezoni) care conțin quarcul b și au fost descoperite anomalii care ar putea reprezenta indicii ale unei noi fizici. Deși descoperirea a generat entuziasm în lumea fizicii, este încă prea devreme să fim siguri.

În 2019 un neutrin cu energie foarte mare a fost măsurat în Antarctica. Cum direcția din care provenea era spre o gaură neagră care „înghițise” o stea, cercetătorii au bănuit că acest neutrin a fost generat în urma acestui proces. Totuși, calcule și observații recente arată cum că evenimentul TDE AT2019dsg nu poate fi cel care a generat neutrinul, căci prea puțină energie se formează în acest proces pentru a genera neutrini atât de energetici.

Atunci când se ciocnesc ioni de plumb sau de aur, pe lângă interacțiuni ale quarcurilor au loc și ciocniri de fotoni. Studiul acestor ciocniri de fotoni poate oferi informații utile despre fenomenele care au loc, existând speranțe că datele obținute ne-ar putea furniza indicii ale unei fizici dincolo de modelul standard al particulelor fundamentale.


ISOLTRAP

Nucleele atomilor sunt compuse din protoni și neutroni care se regăsesc în interiorul nucleului în cadrul unor niveluri energetice și orbitali, așa cum este și cazul electronilor (puteți citi aici articolul nostru despre cum se distribuie electronii în cadrul atomului); există nuclee cu numere magice de neutroni sau protoni, adică cu nivelurile energetice complete. Printre acestea un rol deosebit îl joacă nucleul dublu magic staniu-100.

Recent, în cadrul unui experiment efectuat cu ajutorul spectrometrului de masă de mare precizie ISOLTRAP de la Cern, cercetătorii au reușit să se apropie de acest nucleu greu de produs, prin măsurători efectuate asupra nucleului de indiu-100.


XENON1T

Acum circa un an cercetătorii din cadrul proiectului de cercetare XENON1T de la laboratorul subteran de la Gran Sasso au observat un exces de evenimente care ar fi putut fi datorat materiei întunecate, se zicea pe atunci. Un nou studiu arată că acest rezultat ar putea avea de-a face nu cu materia, ci cu energie întunecată, misterioasa energie care duce la expansiunea accelerată a universului.


Cercetătorii Matthew Bohman (stânga)  și Christian Smorra arată locația capcanei Penning unde sunt răciți atomi într-un nou echipament care conține două capcane.
Credit: F. Sämmer/JGU

Studiul antimateriei este extrem de important pentru a înțelege ce s-a întâmplat cu aceasta imediat după Big Bang. Producerea și mai ales acumularea acesteia este dificilă. O nouă metodă pentru a menține și a răci antimateria la temperaturi joase a fost experimentată recent, metodă care dă rezultate extrem de încurajatoare.


Reprezentarea „singularității triunghiulare”: particula a1 produsă în cadrul coliziunilor de particule se descompune în două particule K* and K0.
Acestea interacționează pentru a produce două particule pi și f0.
Credit: Bernhard Ketzer/Uni Bonn

O nouă particulă sau un proces încă necunoscut? Acesta era misterul din cadrul unui experiment de la CERN (COMPASS) care a măsurat în 2015 un proces misterios, întrucât dădea naștere la ceea ce părea a fi o nouă particulă, dar care avea proprietăți bizare.


„Coloanele creaţiei”, în versiunea SuperBIT (varianta originală aici)

În 2022 va fi lansat un balon umplut cu heliu, care folosește o nouă tehnologie. În acest balon va fi instalat un telescop care va efectua măsurători importante în astronomie, inclusiv pentru studiul materiei întunecate. Noul telescop în balon se numește SuperBIT, are un cost mult mai mic decât cele spațiale, va putea fi întreținut mult mai ușor decât unul plasat pe un satelit și va efectua observații astronomice unice.


Tetraquarcul Tcc+ (reprezentare grafică)

În cadrul proiectului de cercetare LHCb (Large Hadron Collider Beauty) de la Marele Accelerator de Hadroni (LHC) de la CERN a descoperită o nouă particulă exotică formată din două quarcuri și două antiquarcuri; noul tetraquarc este prima particulă exotică care are două quarcuri de tip charm.

Impulsuri laser de mare energie direcționate asupra unei ținte materiale pot genera jeturi de particule și antiparticule, dar și de raze gama, care să ne ajute să studiem procesele ce au loc în apropierea stelelor neutronice. Un astfel de studiu ar putea fi realizat la ELI-NP în România.


Lumina galaxiilor înconjoară o gaură neagră o dată sau de mai multe ori, în funcție de cât de aproape este, rezultatul fiind că vedem o galaxiei în mai multe direcții (imagini multiple). Credit imagine: Peter Laursen

Razele de lumină care provin de la galaxii îndepărtate în apropierea găurilor negre pot să se rotească în jurul acesteia de mai multe ori, datorită deformării spațiu-timpului, astfel încât observăm mai multe imagini ale aceleași galaxii.

Pentru prima data au fost măsurate unde gravitaționale care provin de la sisteme ce conțin o gaură neagră și o stea de neutroni. Aceste unde gravitaționale ne pot ajuta să înțelegem mai bine stelele de neutroni, dar și distribuția găurilor negre și a sistemelor de acest gen în univers.

 

O cercetare a razelor cosmice efectuată pe SSI a observat că nucleele atomilor de fier se comportă diferit de cele ale altor atomi.

Doi cercetători au propus construirea unui accelerator pe Lună, care să atingă energii de o mie de ori mai mari decât cele de la LHC.


Rezultatul coliziunilor de particule în cadrul proiectului LHCb.
Fasciculul de protoni se deplasează de la stânga la dreapta. Liniile din imagine indică traiectele particulelor rezultate în timpul coliziunii.

Se numește oscilație între un mezon D0 și antimezonul D0; un efect de natură cuantică care a fost recent măsurat în cadrul proiectului LHCb de la Marele Accelerator de Hadroni (LHC) de la CERN, Geneva. Ca să aibă loc această oscilație trebuie să existe o diferență între masele celor două particule. Aceasta este cea mai mică măsurată vreodată în fizică, de doar 10-38 grame!

 

Proiectul de cercetare colaborativ DES (Dark Energy Survey) a realizat și examinat cea mai mare hartă a galaxiilor din univers: circa 220 milioane de galaxii distribuite pe o optime din bolta cerească. Obiectivul este de a înțelege mai bine structura universului, compoziția acestuia și evoluția de la Big Bang până în prezent.


O echipă internațională de cercetători a realizat o hartă a materiei întunecate din universul local, folosind un model matematic pentru a deduce locația acesteia pornind de la influența sa gravitațională asupra galaxiilor (punctele negre). Aceste hărți de densitate reproduc trăsături cunoscute, proeminente ale universului (roșu) și dezvăluie, de asemenea, filamente (galben) care acționează ca punți ascunse între galaxii. X-ul indică galaxia noastră, Calea Lactee, iar săgețile indică dinamica universului local generată de gravitație.
Credit: Hong et. al., Astrophysical Journal

În univers există mult mai multă materie întunecată decât materie obișnuită. Cum este distribuită această materie întunecată? Folosind inteligența artificială, noi studii arată că galaxiile sunt legate între ele de filamente de materie întunecată care vor determina soartă universului.

 

Studiul razelor cosmice este extrem de important pentru a înțelege universul. În cadrul LHAASO, un nou proiect de cercetare situat în Tibet, s-au măsurat raze gama cu energii extreme, înainte de finalizarea construcției acestuia. Speranța cercetătorilor este de a înțelege mai bine cum evoluează stelele, cum iau naștere razele cosmice cu energii extreme și cum se produc elementele chimice.


Imagine atom. În centrul imaginii puteți vedea un atom de stronțiu, iluminat de laser bleu-violet.
Credit: David Nadlinger - University of Oxford

Nucleele cu mai mulți neutroni decât protoni au o pătură de neutroni în exterior – cât de subțire este aceasta? Un experiment efectuat la Thomas Jefferson National Accelerator Facility măsoară acest înveliș pentru nucleele de Pb-208. Este extrem de subțire! Studiul are implicații inclusiv în fizica stelelor neutronice.


Detectorul ATLAS. Puteți face un tur virtual aici.

Materia întunecată de care credem că domină universul ar putea fi alcătuită din așa-numite particule supersimetrice: frați și surori ai particulelor normale, cele din modelul standard al particulelor elementare, însă cu spin opus și cu masă mult mai mare. Proiectul de cercetare ATLAS de la acceleratorul LHC la CERN a căutat aceste particule; în mod concret, partenerul supersimetric al quarcului b (bottom), reușind să pună noi limite asupra eventualelor sale caracteristici.

În prezent există două valori ale constantei lui Hubble, cea care reprezintă viteza de expansiune a universului. Ceea ce, desigur, dă mari bătăi de cap fizicienilor. O nouă idee este cea  de a folosi antenele de unde gravitaționale și de a măsura undele care se propagă în univers în urma coliziunilor între stele neutronice și găuri negre. Această măsurătoare împreună cu cea a radiației electromagnetice emise în parte din aceste procese poate da o valoare a constantei lui Hubble care să rezolve această problemă (ori, cine știe? poate să o înrăutățească...).


Interacţiuni ale neutrino detectate la Observatorul de Neutrino IceCube

Neutrinii sunt particule elementare care fac parte din modelul standard al fizicii moderne. Sunt cele mai misterioase particule din cadrul acestui model și au o masă atât de mică, încât nu am reușit s-o măsurăm până în prezent. Rezultatele cercetării din cadrul proiectului KATRIN a impus o nouă limită asupra acestei mase.


Gaură neagră și steaua sa companion (credit:  Jingchuan YU/Beijing Planetarium/2019)

Și găurile negre pot contribui la căutarea materiei întunecate... Bosoni cu mase foarte mici, care ar putea constitui materia întunecată, ar putea avea ca efect încetinirea rotație unei găuri negre. Dacă așa stau lucrurile, atunci detectoarele de unde gravitaționale ar fi trebuit să observe acest fenomen pentru anumite mase ale bosonilor. Cum însă nu au observat încetiniri ale rotației, concluzia este că bosonii (cu mase într-un anumit interval) nu ar exista.

Lentilele gravitaţionale
Crucea lui Einstein: patru imagini ale aceluiaşi quasar care apar în jurul unei galaxii ce produce efectul de lentilă gravitaţională

Quasarii îndepărtați pot să ne apară multiplicați din cauza efectului de lentilă gravitațională. Recent, o nouă analiză computerizată a datelor astronomice, folosind inteligența artificială, a permis să vedem imaginile unor quasari care ajung la noi „multiplicate”: imagini în care se vede de fapt quasarul de patru ori. Aceste imagini ar putea ajuta la descifrarea unui mare mister din cosmologie: care este valoarea constantei lui Hubble?


Evoluţia universului

Trăim într-un univers compus din materie; antimateria a dispărut fără să lase urme. Acest mister nu a fost descifrat încă. O nouă idee propusă pentru a găsi răspunsul este folosirea unei molecule, monometoxidul de radiu, radioactive, care are o formă ce ar ajuta oamenii de știință să efectueze experimente cu o sensibilitate crescută.

Gliese 163c
O reprezentare artistică a planetei Gliese 163c, ca o lume de roci şi gheaţă acoperită cu un strat dens de nori (stânga). Este roşiatică, nu albă, datorită luminii reflectate venită de la steaua-mamă, o pitică roşie. Fotografie în culoare falsă cu steaua Gliese 163 făcută de telescopul Wise Mission aparţinând NASA (centru). Localizarea pe hartă a stelei Gliese 163 în constelaţia Dorado (dreapta) CREDIT: PHL @ UPR Arecibo, NASA/IPAC IRSA, IAU, Sky & Telescope

Materia întunecată este un mare mister; din ce ar putea fi alcătuită? Poate din particule încă nedescoperite. Dacă este așa, atunci aceste noi particule ar putea avea ca efect încălzirea exoplanetelor, adică a planetelor din afara sistemului nostru solar. Acest efect ce ar putea fi observat cu noile telescoape care vor studia exoplanetele.

Recent, un grup de cercetători din Viena a reușit să măsoare în laborator cel mai slab câmp gravitațional detectat până în prezent. Cercetătorii, experți în fizica cuantică, au folosit sfere de aur cu rază de 1 mm și tehnologii extrem de sensibile pentru a efectua această măsurătoare.


Călătorie printr-o gaură de vierme. credit: NASA

Găurile de vierme, care reprezintă scurtături spațio-temporale între două puncte din univers, ar putea exista fără să fie nevoie de materie exotică cu energie negativă. O nouă teorie arată cum s-ar putea genera astfel de găuri de vierme microscopice.


Reprezentare grafică a unui neutron și a unui proton (care sunt formați din quarcuri)

Protonii sunt prezenți în orice atom. Particule compuse din quarcuri care stau împreună prin intermediul interacțiunii nucleare tari, protonii ar putea deveni transparenți la culoare (adică la interacțiunea nucleară tare) dacă sunt puși sub presiune. Un experiment care a încercat să creeze această situație la acceleratorul de la CEBAF din SUA nu a reușit însă să observe protoni transparenți; protonii sunt încă misterioși. 


Reprezentare grafică a unui sistem binar de găuri negre. credit: NASA / ESA / G. Bacon, STScI.

Existența găurilor negre supermasive în centrul multor galaxii este încă un mister; cum au luat naștere acești monștri cu mase atât de mari? O nouă ipoteză avansează ideea conform căreia la originea acestor găuri negre ar fi materia întunecată, care, în universul timpuriu, ar fi ajuns la densități care au avut drept consecință un colaps gravitațional ce a dus la formarea găurilor negre.


Pulsarul Crabului

Unde gravitaționale cu lungimi de undă foarte mari pot afecta modul în care măsurăm radiația emisă de pulsari. Cercetătorii de la NANOGrav susțin că ar fi măsurat  semnale în acest sens. Teoreticienii cred că ar putea proveni de la corzi cosmice sau găuri negre primordiale.


Galaxia NGC 1052-DF2

În univers au fost descoperite câteva galaxii pitice care nu conțin materie întunecată. Acest fapt este destul de misterios și un grup de astronomi a găsit o explicație prin simulări pe calculator ale proceselor de formare și evoluție ale galaxiilor. Responsabile sunt, se pare, forțele de maree gravitațională.


 



Dacă găsești util site-ul, ne poți ajuta cu o donație!
Donează
prin PayPal ori
Patron


Contact
| T&C | © 2021 Scientia.ro