Reprezentare artistică a unei stele neutronice, Swift J1749-2807. În dreapta - steaua-companion.

Raze X ce provin de la cele 7 magnifice, un grup de stele de neutroni relativ apropiate, au energii mai mari decât era de așteptat. Un grup de cercetători arată că acest lucru ar putea fi explicat de existența axionilor, o particulă propusă de teoreticieni, însă până în prezent rămasă nedescoperită, care ar putea explica inclusiv materia întunecată.


Sursa: NASA

Au fost observate o serie de coliziuni de trei galaxii, fiecare cu propria gaură neagră enormă; ce se întâmplă cu aceste găuri negre atunci când galaxiile se ciocnesc? La această întrebare, care are efecte inclusiv asupra studiilor asupra undelor gravitaționale, a răspuns un grup de cercetători care a studiat razele X măsurate de observatorul Chandra (NASA).


Aceasta este o vizualizare a discului de acreţie şi a jeturilor de materie din proximitatea unei găuri negre.
Vizualizarea este una bazată pe predicţiile teoriei relativităţii generale.

Găurile negre super-gigante, cu masa de milioane sau chiar miliarde de ori mai mare decât cea a Soarelui, au luat naştere foarte devreme în istoria universului şi încă nu se ştie cum a fost posibil una ca asta. O nouă ipoteză susţine că aceste găuri negre s-ar fi format în urma colapsului gravitaţional al aşa-numiţilor gravitino, particule ipotetice care ar fi perechea gravitonilor, particula purtătoare a interacţiunii gravitaţionale (încă nedescoperită).


Gaură neagră devorând o stea-partener

Găurile negre primordiale, cele care s-ar fi format imediat după Big Bang, ar putea explica materia întunecată, dar şi universuri diferite de al nostru, închise în găuri negre. Aceste găuri negre ar putea fi descoperite cu noul instrument Hyper Suprime-Cam (HSC) din Hawaii.

În inima multor galaxii se ascund găuri negre enorme: cu mase de milioane şi chiar miliarde de ori mai mari decât cea a Soarelui. Găuri negre se nasc şi atunci când stele, cu masa mare decât Soarele, mor; lăsă în urma lor găuri negre cu mase de câteva ori, chiar zeci de ori, mai mare ca cea a Soarelui. Dar acestea ar putea să nu fie unicele găuri negre din univers!

Materia întunecată s-ar putea să nu existe. De circa 30 de ani o mică parte a comunităţii ştiinţifice susţine că ar trebui modificată legea gravitaţiei, adică modul în care calculăm interacţiunea gravitaţională. O analiză efectuată asupra a 150 de galaxii arată că aşa ceva ar fi posibil.

Materia întunecată este unul dintre cele mai mari mistere ale fizicii actuale; aceasta ar trebui să fie materia dominantă în univers, dar, cum nu emite lumină şi nici nu interacţionează (decât gravitațional) cu materia normală - ar fi invizibilă!


Reprezentare artistică a unei stele neutronice, Swift J1749-2807. În dreapta - steaua-companion.

Ce formă de materie se găseşte în inima unei stele de neutroni? Încă nu ştim, însă măsurători de unde gravitaţionale generate de coliziuni de astfel de stele, precum şi observaţii ale unor pulsari au permis oamenilor de ştiinţă să se apropie cu încă un pas de descifrarea acestui secret.

Stelele mai masive decât Soarele, însă nu mult mai mari decât acesta, atunci când mor lasă în urma lor stele de neutroni. Aceste stele sunt cea mai densă formă de materie cunoscută din univers. Evident, există şi găurile negre, care ar trebui să fie mai dense decât stelele de neutroni, însă găurile negre nu pot fi explicate de fizica de azi. Stelele de neutroni, pe de altă parte, au o densitate atât de mare, încât o linguriţă din materia din care sunt compuse ar cântări mai mult decât Everestul!


CMS / Cern

Un rezultat de excepţie a fost obţinut recent în cadrul proiectului CMS (Compact Muon Solenoid) de la Marele Accelerator de Hadroni (LHC) de la Geneva: pentru prima dată au fost măsuraţi împreună trei bosoni masivi în coliziuni de mare energie proton-proton.

În cadrul modelului standard al fizicii particulelor elementare, pe lângă particulele de materie, precum quarcurile care compun protonii şi neutronii, electronii şi neutrinii, există şi particulele „purtătoare de forță”, adică particule care mediază interacţiunile între particulele de materie. Printre aceste particule se număra fotonii, care sunt cei care mediază interacţiunea electromagnetică, gluonii, responsabili pentru interacţiunea nucleară tare, şi bosonii intermediari grei, particulele W şi Z, care au de-a face cu interacţiunea nucleară slabă. Studiul acestor intermediari ai interacţiunilor este extrem de important, întrucât ne ajută să înţelegem care sunt legile care guvernează universul.


Observatorul spațial Planck / ESA (operațional între 2009 și 2013)

Folosind date furnizate de Observatorul spațial Planck al ESA referitoare la radiația cosmică de fond, o echipă internațională de cercetători a observat indicii ale unei noi fizici. Cercetătorii au creat o nouă metodă de măsurare a unghiului de polarizare a acestei radiații primordiale prin compararea acesteia cu emisiile de lumină ale prafului din galaxia noastră, Calea Lactee. Deși semnalul nu este detectat cu suficientă precizie pentru a trage concluzii certe, acesta indică faptul că materia întunecată sau energia întunecată provoacă o încălcare a așa-numitei „simetrii de paritate” (cu o probabilitate de 99,2%, spun fizicienii).

Viaţa unei stele se bazează pe procese de fuziune nucleară, în care elementele chimice uşoare, precum hidrogenul, sunt transformate în elemente chimice mai grele. Pentru prima dată un astfel de proces, ciclu CNO (carbon-nitrogen-oxygen), a fost observat în cadrul proiectului BOREXINO (laboratorul subteran de la Gran Sasso) prin măsurarea neutrinilor emişi în cadrul ciclului CNO care are loc în Soare.

Coliziune ALICE

În imagine: un proton intră în coliziune cu un nucleu de plumb, dând naştere unei avalanşe de particule în interiorul detectorului ALICE. Proiectele ATLAS, CMS şi LHCb au înregistrat şi ele coliziunile. Credit: Alice/CERN

Quarcul top este cea mai grea particulă din modelul standard şi, prin urmare, are o viaţă extrem de scurtă. Pentru a-l genera este nevoie de multă energie. Pentru prima dată, în cadrul unui experiment de la CERN, CMS, s-au obţinut dovezi ale producerii acestui quarc în coliziuni de nuclee de atomi de plumb. Acest studiu ne va permite să obţinem informaţii despre primele clipe ale universului, când acesta era o supă de quarcuri şi gluoni.


Imagine electron (vezi aici cum a fost obținută)

Miuonii, particule elementare din modelul standard, s-ar putea transforma în electroni; cel puţin aşa susţin anumite teorii. Până la ora actuală însă nimeni nu a văzut o astfel de transformare! Proiectul Mu2e de la Fermilab, SUA, are obiectivul ambiţios de a îmbunătăţi precizia acestei căutări de 10.000 de ori!



„Capcana” Penning. credit: cern.ch

Studiul antimateriei ne ajută să înţelegem ce s-a întâmplat imediat după Big Bang şi, poate, să rezolvăm misterul dispariţiei antimateriei din univers. Antiprotonii, antimateria protonilor, sunt generaţi la CERN (Geneva) şi studiaţi în diverse experimente. Recent a fost propusă ideea creării unei capcane de antiprotoni transportabile – care să permită cercetătorilor să studieze antiprotonii şi în laboratoare mai îndepărtate de locul unde sunt produşi, astfel încât să obţină rezultate mult mai precise.


Navstar 2F (parte din GPS). GPS-ul folosește ceasuri atomice

În mecanica cuantică un sistem poate exista într-o suprapunere de stări; acest aspect al mecanicii cuantice are implicaţii asupra ceasurilor atomice, cele care măsoară cu precizie extremă timpul. Combinând teoria relativităţii a lui Einstein cu efectele cuantice se obţine un nou efect: dilatarea cuantică a timpului.


Evoluţia Universului

De ce există un univers compus din materie? Enigma aceasta nu are încă un răspuns şi s-ar putea să ne poarte spre o nouă fizică, o fizică dincolo de modelul standard. Un nou rezultat obţinut de proiectul de cercetare LHCb la CERN, care studiază mezonii B, arată că, într-adevăr, avem nevoie de o fizică nouă.


Halou materie întunecată (reprezentare grafică). credit: wikipedia.org

Materia întunecată ar putea interacţiona cu materia obișnuită; în acest caz este imposibil de identificat în cadrul acceleratoarelor de particule. Un grup de cercetători a propus folosirea a miliarde de micropendule mecanice – o reţea care vibrează la trecerea unei particule de materie întunecată.

O pânză de păianjen din filamente de materie care înconjoară o enormă gaură neagră la o distanţă de circa 13 miliarde ani-lumină de noi conţine (cel puţin) şase galaxii. Studiul acestei structuri ne poate ajuta să înţelegem originea găurilor negre de mari dimensiuni, dar şi cea a metastructurilor cosmice.


Magnetar (reprezentare artistică). Credit: ESO/L. Calçada

Materia întunecată este un mare mister al fizicii moderne și se bănuieşte că ar fi compusă din particule încă nedescoperite. Printre particulele-candidat responsabile pentru materia întunecată se numără şi axionul, o particulă cu masa extrem de mică care ar putea genera semnale în câmpul magnetic extrem de intens al unui magnetar.


Călătorie printr-o gaură de vierme. credit: NASA

Sunt găurile de vierme posibile? Încă nu ştim, însă teoreticienii se întrec în a găsi şi propune soluţii pentru a putea călători dintr-o parte în alta a galaxiei folosind aceste efecte ale teoriei relativităţii generale, dar şi o nouă teorie despre univers care ar permite existența unor găuri de vierme care să ne permită să le străbatem fără riscuri.

Gaura de vierme ar fi o deformare extremă a spaţiului şi timpului care ne-ar permite să călătorim rapid (asigurând o scurtătură fantastică în spațiu-timp) dintr-o parte în alta a galaxiei şi chiar şi a universului, folosind consecințele teoriei relativităţii generale a lui Einstein. 


În imagine: pitica albă IK Pegasi B (centru-jos), steaua companion clasa-A IK Pegasi A (stânga) și Soarele (dreapta)

Un nou studiu arată că va fi posibil să se studieze eventuale urme de viaţă pe planete care orbitează în jurul unei stele care a murit, transformându-se într-o pitică albă. Misiunea NASA James Webb Space Telescope ar putea descoperi semnale ale existenţei vieţii pe astfel de planete în condiţii extreme. În prezent căutam semne de viaţă pe planete care orbitează în jurul unor stele asemănătoare Soarelui, la distanţe faţă de acesta care să permită existenţa apei sub formă lichidă.  Nu ştim însă sub ce forme s-ar putea afla viaţa în univers; chiar şi pe Pământ există bacterii care supravieţuiesc în condiţii extreme: căldura intensă, în lipsa aerului şi chiar şi la un nivel de radiaţii extrem de mare.

În univers există galaxii care au mult mai puţină materie întunecată, se pare, decât altele. Acesta „dispariţie” a materiei întunecate din unele galaxii i-a ajutat pe cercetători să afle mai multe despre posibila natura a particulelor care ar compune materia întunecată.


Halou materie întunecată (reprezentare grafică). credit: wikipedia.org

Deși nu știm deocamdată din ce este constituită, ce știm este că materia întunecată domină în univers asupra materiei obișnuite (vizibile). Cum se organizează însă această materie întunecată și cât de mici pot să fie halourile de materie întunecată? Un răspuns la această întrebare a fost dat recent de un grup de cercetători cu ajutorul unui univers virtual, adică unul simulat pe calculator.

Un halou de materie întunecată reprezintă o regiune din spațiu decuplată de expansiunea universală, conținând materie cuplată prin intermediul gravitației. Poate conține mai multe galaxii. Întrebarea este: care este mărimea minimă a acesteia?


Pitică albă atrăgând materie (atracție gravitațională) dintr-o stea companion (reprezentare grafică). Credit: NASA

Cum va sfârşi universul? Un fizician de la Illinois State University ne spune că în viitorul îndepărtat universul ar putea sfârşi cu explozii ale piticelor albe (care între timp devin pitice negre) într-un univers extrem de rece şi neprimitor.

Din câte putem observa cu telescoapele noastre vedem că universul este în expansiune; mai mult, expansiunea este accelerată din cauza unei aşa-numite misterioase energii întunecate. Dacă această expansiune va continua, universul se va răci din ce în ce mai mult, temperatura radiaţiei cosmice de fond devenind tot mai mică. Miliarde de ani de acum înainte nu se vor mai naşte stele în univers, galaxiile se vor „stinge” şi chiar şi găurile negre se vor evapora prin emisia radiaţiei lui Hawking. Temperatura universului va tinde spre zero absolut, adică 0 K, un fel de moarte termică a universului.


Rămășițele supernovei Kepler

Rezultatele unui studiu recent arată că mai multe forme de viaţă de pe Pământ (plante) ar fi dispărut acum 359 de milioane de ani, în urma efectelor generate de explozia unor stele la distanţa de circa 65 ani-lumină de noi.

 
Interacţiuni ale neutrino detectate la Observatorul de Neutrino IceCube

În cadrul eforturilor fizicienilor de a identifica neutrinii sterili, adică acei neutrini care ar interacţiona doar prin gravitaţie cu materia (şi, deci, și cu ceilalţi neutrini), a fost obţinut un nou progres: în cadrul proiectelor MINOS+ şi Daya Bay s-au putut stabili limite stricte cu privire la existența acestui tip de neutrin.

Neutrinii sunt particule elementare (care nu sunt alcătuite din alte particule, cum este cazul, de exemplu, al protonilor ori neutronilor) care fac parte din modelul standard al fizicii particulelor. Nu au sarcină electrică, interacţionează slab cu materia şi se găsesc sub trei forme diferite: neutrini electronici, miuonici şi tauonici.

 

Un nou studiu al unei călătorii simulate în trecut a unui sistem cuantic arată ca aşa-numitul efect al fluturelui pentru astfel de sisteme nu este valabil; sistemul se întoarce în prezent mai mult sau mai puţin fără să sufere modificări majore.

Faimosul efect al fluturelui, cel în care o mică schimbare în condiţiile iniţiale are ca efect o schimbare majoră în evoluţia sistemului, este un efect faimos, descoperit de Edward Lorenz, care arăta cum formarea unui uragan poate fi generată de bătăile aripilor unui fluture în urmă cu mai multe săptămâni într-un loc îndepărtat.  


Click dreapta - view image (pentru o rezoluţie superioară)
Grupul Local - grup de galaxii ce cuprinde și Calea Lactee. Conține circa 30 de galaxii. Galaxiile Grupului Local sunt răspândite pe un diametru de 100 milioane de ani-lumină.

Un nou studiu care se bazează pe rezultatele măsurătorilor asupra a 50 de galaxii, precum și o serie de alte observații astronomice - ajung la concluzia că universul ar fi mai tânăr decât se credea, având „doar” 12,6 miliarde de ani (nu 13,8 miliarde ani, vârstă acceptată de majoritatea astronomilor).

De la descoperirea în 1929 de către astronomul american Edwin Hubble a deplasării spre roşu a luminii ce provine de la galaxii îndepărtate (descoperind astfel faptul că universul nu este static, așa cum se credea, ci în expansiune, și încă una accelerată) ştim că universul  nu a existat dintotdeauna, ci a luat naştere în urma unui eveniment pe care oamenii de ştiinţă l-au numit Big Bang, însă despre care nu știm încă foarte multe.


IceCube este un observator de neutrini ale cărui detectoare sunt îngropate la o adâncime mai mare de o milă sub gheaţa de la Polul Sud.

Proiectul de cercetare științifică IceCube, de la Polul Sud, a identificat mai mulţi neutrini decât ar fi fost de aşteptat. Cercetătorii sunt în căutarea sursei acestor neutrini şi bănuiesc că răspunsul ar putea avea legătură cu procesele care au loc în apropierea enormelor găuri negre din galaxiile active.

Un grup de cercetători a propus construirea în laborator a unui model al găurilor negre cu ajutorul grafenului, pentru a studia ce se întâmplă în apropierea aşa-numitului orizont al evenimentelor şi, poate, pentru a face un pas înainte spre o nouă teorie cuantică a gravitaţiei.

Instrumentul eROSITA, un telescop care măsoară raze X, a reuşit să creeze o nouă hartă a universului în raze X, mai detaliată decât cea obţinută în anii '90 cu ROSAT. Multe surse de raze X, precum găuri negre masive, stele cu câmpuri magnetice intense şi clustere de galaxii, au fost observate pentru prima dată.


Galaxia pitică Kinman. Pentru o rezoluție mai mare, click aici.

O stea luminoasă din galaxia pitică Kinman a dispărut fără a lăsa urme; astronomii încearcă să înţeleagă ce anume s-a întâmplat cu această stea. O ipoteză este aceea că steaua s-ar fi putut transforma direct  într-o gaură neagră.


 



Donează prin PayPal ()


Contact
| T&C | © 2021 Scientia.ro