Tipărire
Categorie: Matematica
Accesări: 6562

Multe din problemele de comutativitate în grupuri, altfel delicate, se rezolvă mai uşor dacă ţinem seama de structura algebrică de subgrup a centrului unui grup.

 

Manevrele posibile ale unui cub Rubik formează un grup
Manevrele posibile ale unui cub Rubik formează un grup
Credit imagine: Wikimedia Commons

Definiţie: Fie {tex}(G,\cdot ){/tex} un grup şi {tex}X\subset G{/tex} o submulţime a sa. Mulţimea {tex}Z(X)=\{g\in G|gx=xg,\forall x\in X\}{/tex} se numeşte centralizatorul mulţimii X.

Definiţie: Mulţimea {tex}Z(G)=\{g\in G|gx=xg,\forall x\in G\}{/tex} se numeşte centrul grupului G.

Propoziţie: Pentru orice mulţime {tex}X\subset G,(Z(X),\cdot ){/tex} este subgrup al grupului {tex}(g,\cdot ){/tex}.

Dacă {tex}g_1,g_2\in Z(X){/tex} avem {tex}(g_1g_2)x=g_1(g_2x)=g_1(xg_2)=(g_1x)g_2=x(g_1g_2){/tex} deci {tex}g_1g_2\in Z(X){/tex}.

Din {tex}g_1x=xg_1{/tex} rezultă {tex}xg_1^{-1}=g_1^{-1}x{/tex} deci {tex}g_1^{-1}\in Z(X){/tex}.

Observaţie: Subgrupul {tex}Z(X){/tex} este format din elementele lui G care comută cu toate elementele mulţimii X.

Definiţie: Mulţimea {tex}N(X)=\{g\in G|gX=Xg\}{/tex} se numeşte normalizatorul mulţimii X.

Propoziţie: Pentru orice submulţime {tex}X\subset G{/tex}, normalizatorul {tex}(N(X),\cdot ){/tex} este subgrup al grupului {tex}(G,\cdot ){/tex}. (Demonstraţia se face analog cu cea de la centrul grupului)

Consecinţe:

1. {tex}Z(X){/tex} este subgrup al lui {tex}N(X){/tex}

2. Dacă H este subgrup al lui G, atunci H este subgrup al lui N(H).

3. Fie {tex}(G,\cdot ){/tex} un grup şi {tex}n,p\in Z{/tex}. Notăm cu {tex}(n,p)=1{/tex}. Dacă {tex}\forall x\in G{/tex} şi {tex}x^n\in Z(G){/tex} şi {tex}x^p\in Z(G){/tex}, atunci {tex}(G,\cdot ){/tex} este grup abelian.


Bibliografie: G.M. 4-5/1990.


Pt a posta comentarii: creați un cont pe site, folosiți contul de FB, Twitter sau Google ori postați ca vizitator (fără nicio formalitate de înregistrare). Pt vizitatori comentariile sunt moderate (nu se publică automat).

Loading comment... The comment will be refreshed after 00:00.

Fii primul care comentează.

Spune-ne care-i părerea ta...
caractere rămase.
Loghează-te ( Fă-ți un cont! )
ori scrie un comentariu ca „vizitator”