Atom RutherfordÎn 1909 Ernest Rutherford a sugerat efectuarea unui experiment folosind particule alfa şi o foiţă de aur. Rezultatele acestui experiment au condus la schimbarea modului de înţelegere a structurii atomului. "Noul" atom era în cea mai mare parte spaţiu gol şi constituit din nucleu şi electroni orbitând în jurul acestuia.

Pisica SchrodingerMecanica cuantică ne spune că lumea particulelor elementare este guvernată de legi stranii, contraintuitive. Cum ar arăta lumea noastră dacă şi la nivel macroscopic fenomenele s-ar petrece la fel? Schrödinger a dat răspuns la această întrebare cu ajutorul unui experiment imaginar.

Atom ThompsonLa aproximativ o sută de ani de la conceperea modelului atomic al lui John Dalton, fizicianul englez Joseph John Thomson (1856-1940) imaginează un nou tip de atom, bazat pe constatările făcute în urma experimentelor cu tuburile catodice, schimbând odată pentru totdeauna concepţia atomului indivizibil.

Efectul fotoelectricDouă dintre concepţiile greşite pe care o parte a publicului le are despre marele Albert Einstein sunt că teoria relativităţii i-ar fi adus premiul Nobel pentru fizică şi că el ar fi descoperitorul efectului fotoelectric. Aflaţi pentru ce a fost Einstein laureat al Nobelului şi lămuriţi-vă în privinţa efectului fotoelectric citind în acest articol.

John DaltonModul în care înţelegem atomul astăzi este urmarea mai multor secole de cercetări în care, gradat, teoria atomică a lui Democrit (400 îHr) a căpătat relevanţă ştiinţifică. Citiţi aici o scurtă prezentare a modelului atomic imaginat în anul 1803 de către chimistul britanic, John Dalton.

ElectronÎn februarie 2008 au fost date publicităţii rezultatele unei echipe de cercetători suedezi care au reuşit să capteze cele mai clare imagini ale unui electron până la acea dată. Imaginile au fost publicate pe Internet, dar filmul de câteva secunde a generat confuzii, nefiind clar ce ilustrează acesta.

Young-lumina-ca-undaEste lumina undă ori particulă? Iată o întrebare care şi astăzi naşte discuţii aprinse printre pasionaţii de fizică. În urmă cu 200 de ani Thomas Young, un om de ştiinţă englez, folosind un montaj experimental simplu, dar extrem de ingenios,  demonstra că lumina are o natură ondulatorie.

De când datează primele oglinzi?

Primele menţiuni despre oglinzi confecţionate din bronz şi alămuri apar în biblie şi în scrierile antice ale egiptenilor, grecilor şi romanilor. Cele mai vechi oglinzi din sticlă, acoperite pe o faţă cu un strat metalic strălucitor, au apărut în Italia în timpul secolului XIV. Iniţial, procesul tehnologic folosit la confecţionarea oglinzilor din sticlă consta în aplicarea pe una din suprafeţele sticlei a unui strat de mercur şi staniol şlefuit.

Metoda folosită şi astăzi la confecţionarea oglinzilor a fost descoperită în 1835 de chimistul de origine germană, Justus von Liebig. Procesul imaginat de el consta din turnarea unui amestec de amoniac şi argint pe suprafaţa sticlei. Dacă se adaugă şi formaldehidă  (produs gazos cu miros iritant, solubil în apă, folosit la fabricarea răşinilor sintetice, a coloranţilor, medicamentelor, ca dezinfectant etc) amestecului metalic, rezultă o suprafaţă argintie, strălucitoare, care are proprietatea de a reflecta lumina. În prezent suprafeţele oglinzilor sunt de diferite forme, obţinându-se diverse efecte ale obiectelor reflectate.

Răspunsul scurt este că nu ne prea dăm seama de adevărata dimensiune a obiectelor privindu-le în oglindă. Puteţi face următorul experiment: încercaţi, printr-o măsurătoare nepretenţioasă, cu ajutorul mâinilor, să vedeţi cât de mare vă este capul, aşa cum apare el în oglindă. O să observaţi că măsurătoarea va arăta că acesta este mai mic decât în realitate. Cu toate acestea, de regulă, puteţi face o evaluare corectă a lucrurilor pe care le priviţi în oglindă. Cum se face că se întâmplă astfel?

 

A woman before a mirror
Eserin Adi. A woman before a mirror

 

Teoria Relativităţii a lui Albert Einstein constă din două porţiuni majore: teoria relativităţii restrânse (sau relativitatea specială) şi relativitatea generalizată.

Relativitatea restrânsă descrie fenomenele care devin observabile la viteze comparabile cu viteza luminii, în sisteme de referinţă inerţiale (adică sisteme de referinţă care se deplasează unele faţă de altele la viteze constante). Pe de altă parte, relativitatea generală se ocupă de sistemele de referinţă neinerţiale (care au o mişcare accelerată), descriind fenomenele apărute în preajma câmpurilor gravitaţionale foarte puternice (în jurul corpurilor cereşti masive, cum ar fi stelele şi planetele). Această din urmă teorie stabileşte o legătură între gravitaţie şi curbura spaţiului, concept pe care îl vom lămuri ceva mai târziu.

Dicţionarul explicativ al limbii române ne spune că un cal-putere este o unitate de măsură pentru putere, egală cu 75 de kilogrammetri-forţă pe secundă, folosită pentru a exprima puterea unui motor. Aceasta înseamnă că un cal-putere reprezintă forţa necesară ridicării unui corp de 75 kg la înălţimea de un metru, în timpul de o secundă, şi se traduce cu o valoare de 735,49875 W.

În ingineria electrică, calul-putere se defineşte ca fiind egal cu 736 de waţi.

Noţiunea de cal-putere a fost introdusă de inventatorul scoţian James Watt, astfel că povestea naşterii acestei unităţi de măsură se raportează la sistemul englezesc de unităţi.  Valoarea unui cal-putere a fost stabilită după ce Watt a efectuat o serie de experimente în care aceste animale de tracţiune (caii) tractau diverse cantităţi de cărbune. Iniţial, Watt a stabilit că, în medie, un cal era capabil să tracteze 22000 de livre de cărbune pe o distanţă de  un picior într-un minut.

 

James Watt. Portret
James Watt (1736-1819)
Portret realizat de Carl Frederik von Breda

 

Constituenţi fundamentali ai Universului, particulele identificate de fizicieni până în prezent ca aparţinând Modelului Standard – electroni, neutrini, quarcuri ş.a.m.d. - reprezintă un veritabil alfabet al materiei. Asemenea literelor – omoloagele lingvistice ale particulelor elementare – aceste elemente fundamentale reprezintă cele mai mici componente ale materiei identificate cu mijloacele pe care le posedă ştiinţa astăzi. Conform celor observate până în prezent, se pare că nu există o substructură sau nişte sub-particule care să intre în componenţa acestor constituenţi fundamentali.

Teoria stringurilor (teoria sforilor, după cum mai este numită) susţine însă contrariul. Potrivit acestei teorii, dacă am avea la dispoziţie o tehnologie care să ne permită să vizualizăm materia la un ordin de magnitudine mult inferior celui observabil cu instrumentele actuale, am constata că aceste particule fundamentale nu sunt punctiforme, aşa cum le descrie ştiinţa astăzi, ci sunt constituite din minuscule bucle unidimensionale. Autorii şi adepţii acestei teorii descriu stringurile (sau corzile, sforile etc.) ca pe nişte filamente minuscule care vibrează sau oscilează într-o singură dimensiune.

Figura de mai jos ilustrează ideea principală a teoriei stringurilor, plecând de la un măr şi pătrunzând la scări succesiv mai mici în structura internă a acestuia şi a constituenţilor săi.

 

Teoria stringurilor
 
 

Câte dimensiuni are lumea în care trăim? Care sunt acestea?

Fizicienii descriu lumea în care trăim ca având patru dimensiuni. Primele trei dintre acestea descriu spaţiul şi sunt notate în literatura de specialitate, în lucrările de matematică şi fizică, cu x , y şi z. x desemnează întotdeauna lungimea, y-lăţimea şi z-înălţimea.

 

Ne putem imagina viaţa într-o singură dimensiune? Dar într-un univers bidimensional?

O lume unidimensională ar fi asemenea unui fir de aţă, iar vieţuirea într-un asemenea univers ar permite ciudaţilor săi locatari să se deplaseze doar pe direcţia înainte-înapoi. Ne putem imagina în continuare un areal bidimensional, acolo unde locuitorii s-ar putea deplasa asemenea furnicilor pe o foaie de hârtie: înainte, înapoi , stânga, dreapta, sau chiar trecând de pe o faţă pe cealaltă a filei. Dacă adăugăm şi a treia dimensiune, atunci furnicile ar putea părăsi suprafeţele hârtiei pentru a se deplasa pe direcţia sus-jos.

Turnul din Pisa

 

Centrul de masă al Turnului din Pisa cade în interiorul suprafeţei de sprijin

(schools.wikia.com)

Până nu demult existau temeri serioase că celebrul turn înclinat din oraşul italian Pisa avea să cadă în cele din urmă, din cauza faptului că fundaţia sa, deşi adâncă de 3 metri, nu fusese turnată pe rocă solidă. Din cauza proastei calităţi a solului, fundaţia a început să se scufunde imediat după începerea construcţiei, în anul 1173, provocând înclinarea spre sud a turnului. Recent, după finalizarea unor lucrări de restaurare care au durat 18 ani s-a spus că înclinarea progresivă şi afundarea turnului au fost stopate, astfel că este posibil ca celebra construcţie să rămână un obiectiv turistic important pentru multă vreme de acum înainte. Rămâne totuşi întrebarea: de ce s-a menţinut în picioare această construcţie pe care mai toate ilustratele o înfăţişează ca fiind pe punctul să cadă?

Oricine ştie că o minge de tenis sau una de fotbal urmează de obicei după lovire traiectorii parabolice prin aer, conform legilor mecanicii. De asemenea, cei care au satisfăcut stagiul militar ori sunt militari de profesie s-au familiarizat în mod sigur cu balistica, o ramură a mecanicii teoretice care studiază legile mişcării unui corp greu, unui proiectil sau unui glonţ aruncat sub un anumit unghi faţă de orizontală. Dacă însă imprimăm o mişcare similară prin aer unui ciocan sau unei chei fixe, mişcarea acestor obiecte pare extrem de complicat de descris prin intermediul unor ecuaţii matematice. Cauza mişcării aparent imposibil de descris a ciocanului prin aer este distribuţia neuniformă a masei acestuia.

 

 

Traiectoria unui ciocan prin aer

Traiectoria ciudată a unui ciocan prin aer. Centrul de masă respectă regulile traiectoriei balistice.

 

 

Pot comunica astronauţii în spaţiul cosmic?

Undele sonore au nevoie de un mediu prin care să se propage, aşa cum a demonstrat Robert Boyle acum aproape 350 de ani. Din această cauză comunicarea verbală în spaţiul extraterestru devine imposibilă, cel puţin în condiţii similare comunicării interumane normale, aşa cum o experimentăm cu toţii pe Terra. Când un cosmonaut vorbeşte corzile sale vocale vibrează, iar respectivele vibraţii sunt transmise aerului din cavitatea bucală şi din interiorul căştii cu care este dotat costumul special al acestuia. Vibraţia se transmite şi căştii în sine, doar că aici este punctul terminus al propagării undei deoarece mai departe nu mai există nimic. Undele sonore nu se pot propaga prin vacuum-ul din spaţiul extraterestru, astfel că sunetele scoase de astronauţi rămân practic "închise" în interiorul propriilor costume atunci când aceştia se află în spaţiul cosmic.

Moleculele de aer au tendinţa de a se mişca mai uşor prin medii calde şi umede datorită faptului că în aceste condiţii energia lor internă creşte. Cum viteza sunetului depinde de felul în care variază presiunea aerului atunci când moleculele se ciocnesc unele de altele (creând zone de compresie, dar şi zone cu aer mai rarefiat), elasticitatea moleculelor devine un factor important. De aceea, în zilele călduroase şi cu umiditate ridicată, sunetul călătoreşte mai repede decât într-o zi rece şi uscată, atunci când moleculele de aer nu oscilează cu aceeaşi uşurinţă.

 

Ce este bariera sunetului?

Bariera sunetului reprezintă viteza pe care un obiect trebuie să o atingă pentru a depăşi viteza sunetului. Viteza sunetului este deseori folosită drept referinţă pentru măsurarea şi exprimarea vitezelor dezvoltate de aparatele de zbor. Viteza sunetului are valoarea de aproximativ 331 metri/secundă, măsurată la o temperatură de 00C şi poartă numele de Mach 1, ales în cinstea fizicianului şi filozofului austro-ceh Ernst Mach. Dublul vitezei sunetului este denumit şi Mach 2, o viteză egală cu de trei ori valoarea vitezei sunetului este Mach 3 ş.a.m.d. La temperatura de 200C viteza sunetului are o valoare de 343,14 metri/secundă.

 

Căldura este o formă de energie, astfel că foloseşte unitatea de măsură numită joule după fizicianul englez James Prescott Joule. Deşi joule-ul reprezintă standardul internaţional stabilit pentru măsurarea energiei, căldura poate fi măsurată şi în calorii.

O calorie se defineşte ca fiind cuantumul de energie necesar pentru a creşte temperatura unui gram de apă cu un grad Celsius sau Kelvin. Energia necesară pentru acest proces este de 4,186 jouli, o cantitate relativ mică de energie. Valoarea aceasta variază în funcţie de temperatura la care se află apa atunci când i se ridică temperatura cu un grad. Măsurătorile efectuate atunci când s-a ridicat temperatura unui gram de apă de la 14,50C la 15,50C au relevat valori ale caloriei cuprinse între 4,1852 şi 4,1858 jouli. Când apa are temperatura în jurul valorii de 200C, se obţine o valoare aproximativă a caloriei de 4,182 jouli. La 40C, obţinem 4,204 jouli. S-a stabilit şi o valoare a caloriei medii, ca fiind a suta parte din energia necesară creşterii temperaturii unui gram de apă de la 00C la 1000C la presiune atmosferică normală, şi anume 4,190 jouli.

Majoritatea materialelor îşi măresc volumul pe măsură ce sunt încălzite, iar funcţionarea termometrelor pe care le folosim cu toţii se bazează pe acelaşi principiu. Rezervorul cu lichid şi tubul termometrului conţin o cantitate predeterminată de alcool sau mercur care, la temperaturi scăzute, încape în rezervor. Atunci când temperatura mediului ambiant creşte, lichidul se dilată, urcând prin tubul capilar al termometrului. Pe măsură ce lichidul urcă, nivelul acestuia măsurat pe scala gradată fixată în dreptul tubului capilar indică temperatura ambientului.

 



Ar fi util dacă ne-ai sprijini cu o donație!
Donează
prin PayPal ori
Patron


Contact
| T&C | © 2021 Scientia.ro