Condensat Bose-Einstein Care este temperatura spaţiului cosmic, foarte departe, în hăurile intergalactice, unde găsim cam un atom de hidrogen într-un volum de un metru cub de vid? Poate un atom individual să fie cald sau rece? Se poate spune că un atom are 2 Kelvin?

Graviton Cu toţi am auzit despre cele patru forţe fundamentale: electromagnetismul, gravitaţia, forţa tare şi forţa slabă. De mai puţină "publicitate" au parte "vehiculele" acestor forţe, particulele purtătoare ale forţelor. În acest articol, aşadar, veţi afla cum funcţionează fotonii, gluonii, bosonii W şi Z şi gravitonii (ultimii încă nedetectaţi).

Tabelul periodicMendeleev a construit tabelul ce-i poartă numele în mod empiric, fără a cunoaşte structura atomului. Intuiţia sa extraordinară a făcut ca cercetătorii să bănuiască existenţa unor elemente doar privind la tabel, din logica acestuia. Astăzi ştim că tabelul oferă o imagine a modului în care se completează nivelurile energetice ale atomilor.

Inseparabilitatea cuanticăUltima parte a filmului documentar dedicat mecanicii cuantice explică  cel mai contraintuitiv şi mai surprinzător fenomen din galeria bizareriilor lumii cuantice. Este vorba despre inseparabilitatea cuantică, o trăsătură a microcosmosului despre care unii fizicieni spun că încalcă regulile teoriei relativităţii.

Fisiunea nucleară reprezintă un fenomen controlat de om. Fuziunea nucleară însă, este deocamdată doar un deziderat, dar unul care odată împlinit ar schimba soarta speciei umane într-un mod nemaiîntâlnit în istorie. Urmăriţi filmul din acest articol pentru a înţelege modul în care cele două fenomene funcţionează...

Spinul particulelorMini-documentarul dedicat mecanicii cuantice continuă cu un episod dedicat lui Wolfgang Pauli şi regulii pe care el a introdus-o în strania lume cuantică: Principiul Excluziunii. Puteţi vedea apoi şi cum, plecând de la acest principiu, particulele fundamentale sunt clasificate în două mari familii: fermionii şi bosonii.

IncertitudineAl patrulea episod al documentarului dedicat mecanicii cuantice revine asupra principiului incertitudinii, continuă cu descrierea modelului cuantic al atomului de hidrogen, dar prezintă şi mecanismele care stau la baza apariţiei spectrelor de emisie şi de absorbţie ale atomilor diverselor elemente chimice.

Particulele fundamentaleÎntrebarea din titlu nu este una tocmai corectă. Şi asta deoarece particulele fundamentale sunt prea mici pentru a putea fi observate cu vreun dispozitiv imaginabil, cu atât mai puţin cu ochiul liber. Ce urmează este o serie de reprezentări aproximative ale electronului, quarcurilor şi "rudelor" lor.

IncertitudineÎn al treilea episod al documentarului dedicat mecanicii cuantice, aventura lui Kevin şi a Dianei pe  acest tărâm fantastic al ştiinţei continuă cu dezbaterea principiului incertitudinii formulat de Werner Heisenberg, urmată apoi de prezentarea celei mai frumoase ecuaţii din istoria ştiinţei, ecuaţia lui Schrödinger.

Mecanica cuanticăAcest articol conţine partea a doua a documentarului care prezintă principalele idei din mecanica cuantică. În episodul 2 puteţi afla despre modelul atomic propus de Niels Bohr şi cum explică acesta liniile spectrale ale hidrogenului, dar şi despre dualitatea particulă-undă introdusă de francezul Louis de Broglie.

Mecanica cuanticăVă prezentăm în continuare primul episod dintr-o serie de filme dedicate popularizării fizicii cuantice. Această primă parte, care va fi în curând însoţită şi de următoarele, prezintă pe înţelesul tuturor, folosind o grafică superbă, ideile şi observaţiile experimentale care anunţau la început de secol XX revoluţia ştiinţifică ce avea să urmeze.

Teoria modelului standard al particulelor elementare combină electrodinamica cuantică, cromodinamica cuantică şi teoriile despre forţa slabă în cadrul celei mai cuprinzătoare concepţii despre particulele elementare. Gravitaţia nu îşi găseşte locul încă în cadrul acestei teorii.

Bosonul HiggsFilmul următor descrie într-o manieră succintă şi clară, prin intermediul unei grafici de excepţie, mecanismul care face ca particulele fundamentale să aibă masă. Vorbim despre noţiuni teoretice, care încă nu au fost confirmate experimental, dar care sunt conţinute de Modelul Standard al particulelor elementare.

Atom de BroglieDacă lumina manifestă în anumite circumstanţe proprietăţi corpusculare, oare în cazul particulelor elementare, precum electronii sau protonii am putea vorbi de un comportament similar undelor? Fizicianul francez Louis de Broglie oferă un prim răspuns atunci când îşi susţine teza de doctorat, în 1924.

Efect ComptonAlbert Einstein explicase încă din 1905 efectul fotoelectric folosind un concept revoluţionar, cuanta de lumină. Pentru a convinge un număr important de sceptici a fost nevoie însă de observaţiile unui fizician american, Arthur Compton, care a reconfirmat teoria lui Einstein când a explicat efectul care îi poartă numele.

NeutrinoAvansând o ipoteză îndrăzneaţă, în anii '30 ai secolului trecut fizicianul Wolfgang Pauli propune ca "remediu disperat" pentru una din problemele fizicii vremii existenţa unei noi particule elementare, neutră din punct de vedere electric şi cu masă extrem de mică. Enrico Fermi îi dă în anul 1933 numele de neutrino.

Forţa tare Protonii, elemente constituente ale nucleului atomic, sunt particule cu sarcină pozitivă. Având aceeaşi sarcină, se resping reciproc. Ce face totuşi ca nucleul atomic să nu se dezintegreze? Ce ţine protonii laolaltă, deşi aparent ar trebui să se depărteze unul de altul? Aflaţi din acest articol ce forţă ţine nucleul atomic unit.

Dezintegrarea alfaExistă elemente chimice cu nuclee masive, precum uraniul şi plutoniul, care se dezintegrează în mod spontan dând astfel naştere unor nuclee cu o mai mare stabilitate. Fenomenul poartă numele de radioactivitate şi este însoţit de eliberarea mai multor tipuri de radiaţie. Citiţi aici despre dezintegrările alfa, beta şi gama.

Atom BohrLaureat al premiului Nobel, Niels Bohr este unul dintre fizicienii de frunte ai secolului al XX-lea. Avansând idei revoluţionare, ce contraziceau principiile fizicii începutului de secol XX, acesta a "reproiectat" atomul, introducând orbitele fixe ca regulă imuabilă pentru mişcarea electronilor şi niveluri fixe de energie pentru aceştia.

Distributie radiatie corp negruCorpul absolut negru a reprezentat una dintre marile probleme ale fizicii la sfârşit de secol XIX. Max Planck este fizicianul care a găsit soluţia matematică ce a eliminat "catastrofa ultravioletă". Emisia discretă a energiei, introdusă de Planck, deşi salutară pentru problema dată, i se părea necredibilă însuşi părintelui teoriei...


 



Ar fi util dacă ne-ai sprijini cu o donație!
Donează
prin PayPal ori
Patron


Contact
| T&C | © 2021 Scientia.ro