Oamenii de ştiinţă au vrut să afle de ce culoarea penelor unor păsări este albastră fără ca acestea să aibă vreun pigment de culoare albastră. Cu ajutorul razelor X din cadrul Advanced Photon Source ei au reuşit să descopere că păsările au anumite structuri, aflate la o scară nanometrică, pe penele lor care reflectă doar lumina având lungimea de undă corespunzătoare pentru culoarea albastru. În imaginea de sus este arătată pasărea Cotinga maynana aşa cum o vedem noi.

Există dovezi incontestabile cum că Universul se extinde accelerat. Acest lucru înseamnă că în viitor el va fi tot mai pustiu, cu galaxii care se îndepărtează tot mai mult unele de altele şi în care nu va exista nicio speranţă (dacă a existat vreodată) de a se putea călători între ele. Dar ar putea fi expansiunea accelerată a Universului chiar mai sumbră de atât?

Din când în când câte un fizician se află în faţa unei camere de luat vederi şi fie din prea mult entuziasm, fie din cauza editării, îl auzim spunând ceva ce este "mai puţin nuanţat" decât în intenţia lui. "Fierul omoară stelele" este una dintre clasice. Pentru a fi foarte clar, dacă arunci o mână de fier într-o stea te vei alege cu o mulţime de vapori de fier, pe care nu-l vei mai recupera.

În articolul de azi vom aborda un subiect la modă în lumea pasionaţilor de fizică ori astronomie, dar un subiect care se referă la "partea întunecată" a Universului, adică la materia întunecată. Ce reprezintă această misterioasă componentă a Universului şi de ce ar trebui să fim interesaţi de ea?

GalaxiiCa de fiecare dată, şi astăzi puteţi citi un articol ştiinţific care pretinde că poate prezenta „cea mai bună imagine a materiei întunecate" de până acum. Dacă aceasta este atât de întunecată, atunci cum putem să o vedem? În acest articol vom afla cum putem face asta.

ParticuleAm prezentat anterior un ghid cuprinzător pentru lumea particulelor subatomice ce prezintă toate particulele elementare şi particulele compozite cunoscute în prezent. Dar acum a venit momentul să lăsăm certitudinile la o parte şi să explorăm lumea necunoscută şi plină de mister a particulelor încă nedescoperite. Există trei tipuri de bază ale acestor particule ipotetice.

Particulele elementarePrin multitudinea de particule care fac parte din lumea subatomică (miuoni, neutrini, particule supersimetrice, celebrul boson Higgs) nu este de mirare că fizica teoretică poate fi uneori derutantă. Din acest motiv noi am realizat acest ghid simplu (rezonabil de simplu) ce cuprinde toate particulele elementare. Ghidul obţinut conţine, aşa cum vă puteţi imagina, un subiect destul de amplu aşa încât noi l-am împărţit în (cel puţin) două părţi.

EinsteinÎn ciuda progreselor pe care le-am făcut în încercarea noastră de a înţelege  Universul (bosonul Higgs, de exemplu), încă mai există câteva goluri în cunoștințe noastre.  Unde este marea teorie unificată sau teoria totului? şi de ce pare teoria generală a relativităţii a lui Einstein să fie în contradicţie cu mecanica cuantică? Şi totuşi, de ce am vrea să le unificăm?

FizicăNimeni nu cunoaşte cu certitudine, dar este posibil ca Universul să fie construit într-un mod complet diferit faţă de ceea ce anticipează teoriile şi modelele actuale. Cel mai des utilizat model al Universului din prezent nu poate explica, în totalitate, Universul.

Acceleratorul-LHCO bună parte din proiectele de dezvoltare ale Google sunt sortite eşecului. În fapt, mai bine de trei sferturi. Cu toate acestea, angajaţii Google sunt stimulaţi pentru a dedica o parte din timpul lor de la serviciu propriilor cercetări. Iată o serie de eşecuri interesante.

Fizica conceptualaCând impulsul este transferat, ne referim la forţă ca rata de transfer. Unitatea de măsură pentru forţă este newtonul (N). Relaţia dintre forţă şi impuls este precum relaţia dintre putere şi energie  sau cea dintre veniturile şi cheltuielile tale şi soldul bancar.

Fizica conceptualaImpulsul şi energia cinetică sunt ambele măsuri ale cantităţii de mişcare şi au fost subiectul unei dispute secundare în cadrul  controversei  Newton-Leibniz, asupra celui care a inventat analiza matematică şi anume care ar fi fost adevărata măsură a mişcării.

Fizica conceptualăVom vorbi astăzi despre conservarea impusului. Să ne întoarcem la povestea imposibilă a lui Jen Yu şi Iron Arm Lu. Pentru simplitate îi vom reprezenta ca două bile de biliard obişnuite (imaginea a). Poate părea o simplificare drastică, dar putem vedea lucrurile şi astfel.

MultiversUnii dintre cei mai renumiţi oameni de ştiinţă au început să se îngrijoreze cu privire la faptul că o idee radicală propusă în 1997 de trei fizicieni de la Universitatea Delaware s-ar putea să fie corectă. Teoria spune că s-ar putea să trăim într-un ”multivers”.

Materie si antimaterieAntimateria este misterioasă, periculoasă şi rară. În ficţiune ea stă la baza creierelor pozitronice ale lui Isaac Asimov, a motoarelor de pe nava Enterprise şi a bombei lui Dan Brown din ”Îngeri şi demoni”. Dar în lumea reală antimateria este o chestiune destul de banală.

Mersul pe gheataMersul legănat al pinguinului este o tehnică veche şi adesea citată ca fiind una dintre tehnicile cunoscute de evitare a rănirii grave în timpul deplasării pe gheaţă. Este de reţinut şi faptul că deplasarea asemeni unui pinguin poate fi foarte obositoare.


De ce nu este spaţiu-timpul nostru 4-dimensional curbat în a 5-a dimensiune?

Ar putea fi, dar nu cunoaştem în prezent niciun experiment prin care să aflăm asta.

CUPRINS

Cum este să fii într-un loc fără gravitaţie?

Cei mai mulţi cred că astronauţii care călătoresc pe orbită, în jurul Pământului, sunt în stare de „imponderabilitate”, dar de fapt există încă atracţie gravitaţională pe orbită, doar că este echilibrată de forţa centrifugă care acţionează asupra navei spaţiale. Câmpul gravitaţional poate fi în continuare detectat, deoarece produce un efect „de maree” chiar şi în interiorul navei spaţiale.  

CUPRINS


Dacă un observator A se deplasează accelerat faţă de un observator B, vor fi de acord cei doi că observatorul A este cel care câştigă în masă?

Dacă studiem ce se întâmplă clipă de clipă, vom constata că în fiecare clipă observatorii se distanţează cu viteză constantă şi astfel, A şi B vor vedea reciproc masele, unul pe a celuilalt, schimbându-se în conformitate cu relativitatea generală. Singurul lucru care sparge această simetrie este faptul că vedem observatorul A folosind o rachetă spaţială şi considerăm că observatorul B reprezintă sistemul de referinţă neaccelerat. Dacă B este pe Pământ şi A este într-o rachetă, este clar că orice modificare de masă va fi atribuită mişcării observatorului A, dar, în orice caz, B privind la A va vedea cum observatorul A se îndepărtează cu viteză crescătoare în raport cu sistemul său propriu de referinţă, care este un sistem perfect „adecvat” pentru a fi utilizat. Dacă B este pe Pământ, A va vedea la rândul său cum B şi Pământul câştigă în masă, chiar dacă A nu va afirma niciodată că el este staţionar şi observatorul B cu Pământul se îndepărtează de el, acceleraţi într-un mod misterios.

CUPRINS

Care este cea mai simplă dovadă că există mai mult de 4 dimensiuni?

Nu este nicio dovadă. Toate "dovezile" sunt de natură teoretică, dar nici una nu a fost verificată, deoarece ... nu ştim cum! Tot ce ştim este că spaţiu-timpul nostru este 4 dimensional într-o aproximare de câteva părţi la o sută de miliarde, bazată pe cât de bine urmează gravitaţia relativitatea generală în sistemul nostru solar.


 


Sprijiniţi-ne cu o donaţie.


PayPal ()


Contact
| T&C | © 2020 Scientia.ro