Reprezentare grafică a unui sistem binar de găuri negre. credit: NASA / ESA / G. Bacon, STScI.
Existența găurilor negre supermasive în centrul multor galaxii este încă un mister; cum au luat naștere acești monștri cu mase atât de mari? O nouă ipoteză avansează ideea conform căreia la originea acestor găuri negre ar fi materia întunecată, care, în universul timpuriu, ar fi ajuns la densități care au avut drept consecință un colaps gravitațional ce a dus la formarea găurilor negre.
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
Pulsarul Crabului
Unde gravitaționale cu lungimi de undă foarte mari pot afecta modul în care măsurăm radiația emisă de pulsari. Cercetătorii de la NANOGrav susțin că ar fi măsurat semnale în acest sens. Teoreticienii cred că ar putea proveni de la corzi cosmice sau găuri negre primordiale.
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
Galaxia NGC 1052-DF2
În univers au fost descoperite câteva galaxii pitice care nu conțin materie întunecată. Acest fapt este destul de misterios și un grup de astronomi a găsit o explicație prin simulări pe calculator ale proceselor de formare și evoluție ale galaxiilor. Responsabile sunt, se pare, forțele de maree gravitațională.
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
În afara celor trei dimensiuni spațiale și una temporală ar putea exista dimensiuni suplimentare: o teorie care presupune existența a cinci dimensiuni rezolvă o serie de mistere din fizica modernă, printre care și cel legat de materia întunecată, dând speranțe oamenilor de știință să descopere semnale ale existenței acesteia în viitorul apropiat.
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
Interacţiuni ale neutrino detectate la Observatorul de Neutrino IceCube
Neutrinii sunt printre cele mai fascinante particule din cadrul modelului standard al fizicii particulelor elementare. Studiul lor este complicat, motiv pentru care o nouă măsurătoare a unui proces de împrăștiere coerentă cu nuclee de argon, efectuată în cadrul proiectului COHERENT, SUA, este extrem de interesantă, putând duce la noi descoperiri care să explice parte din misterele fizicii actuale.
Experimentele efectuate au stabilit existența unui nou tip de interacțiune a neutrinilor. Cercetătorii au observat interacțiunilor neutrinilor de energie joasă cu nuclee de argon prin intermediul forței nucleare slabe într-un proces denumit împrăștiere neutrino-nucleu coerentă elastică (coherent elastic neutrino-nucleus scattering - CEvNS)
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
Reprezentare artistică a unei stele neutronice, Swift J1749-2807. În dreapta - steaua-companion.
Raze X ce provin de la cele 7 magnifice, un grup de stele de neutroni relativ apropiate, au energii mai mari decât era de așteptat. Un grup de cercetători arată că acest lucru ar putea fi explicat de existența axionilor, o particulă propusă de teoreticieni, însă până în prezent rămasă nedescoperită, care ar putea explica inclusiv materia întunecată.
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
Sursa: NASA
Au fost observate o serie de coliziuni de trei galaxii, fiecare cu propria gaură neagră enormă; ce se întâmplă cu aceste găuri negre atunci când galaxiile se ciocnesc? La această întrebare, care are efecte inclusiv asupra studiilor asupra undelor gravitaționale, a răspuns un grup de cercetători care a studiat razele X măsurate de observatorul Chandra (NASA).
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
Aceasta este o vizualizare a discului de acreţie şi a jeturilor de materie din proximitatea unei găuri negre.
Vizualizarea este una bazată pe predicţiile teoriei relativităţii generale.
Găurile negre super-gigante, cu masa de milioane sau chiar miliarde de ori mai mare decât cea a Soarelui, au luat naştere foarte devreme în istoria universului şi încă nu se ştie cum a fost posibil una ca asta. O nouă ipoteză susţine că aceste găuri negre s-ar fi format în urma colapsului gravitaţional al aşa-numiţilor gravitino, particule ipotetice care ar fi perechea gravitonilor, particula purtătoare a interacţiunii gravitaţionale (încă nedescoperită).
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
Gaură neagră devorând o stea-partener
Găurile negre primordiale, cele care s-ar fi format imediat după Big Bang, ar putea explica materia întunecată, dar şi universuri diferite de al nostru, închise în găuri negre. Aceste găuri negre ar putea fi descoperite cu noul instrument Hyper Suprime-Cam (HSC) din Hawaii.
În inima multor galaxii se ascund găuri negre enorme: cu mase de milioane şi chiar miliarde de ori mai mari decât cea a Soarelui. Găuri negre se nasc şi atunci când stele, cu masa mare decât Soarele, mor; lăsă în urma lor găuri negre cu mase de câteva ori, chiar zeci de ori, mai mare ca cea a Soarelui. Dar acestea ar putea să nu fie unicele găuri negre din univers!
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
Materia întunecată s-ar putea să nu existe. De circa 30 de ani o mică parte a comunităţii ştiinţifice susţine că ar trebui modificată legea gravitaţiei, adică modul în care calculăm interacţiunea gravitaţională. O analiză efectuată asupra a 150 de galaxii arată că aşa ceva ar fi posibil.
Materia întunecată este unul dintre cele mai mari mistere ale fizicii actuale; aceasta ar trebui să fie materia dominantă în univers, dar, cum nu emite lumină şi nici nu interacţionează (decât gravitațional) cu materia normală - ar fi invizibilă!
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
Reprezentare artistică a unei stele neutronice, Swift J1749-2807. În dreapta - steaua-companion.
Ce formă de materie se găseşte în inima unei stele de neutroni? Încă nu ştim, însă măsurători de unde gravitaţionale generate de coliziuni de astfel de stele, precum şi observaţii ale unor pulsari au permis oamenilor de ştiinţă să se apropie cu încă un pas de descifrarea acestui secret.
Stelele mai masive decât Soarele, însă nu mult mai mari decât acesta, atunci când mor lasă în urma lor stele de neutroni. Aceste stele sunt cea mai densă formă de materie cunoscută din univers. Evident, există şi găurile negre, care ar trebui să fie mai dense decât stelele de neutroni, însă găurile negre nu pot fi explicate de fizica de azi. Stelele de neutroni, pe de altă parte, au o densitate atât de mare, încât o linguriţă din materia din care sunt compuse ar cântări mai mult decât Everestul!
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
CMS / Cern
Un rezultat de excepţie a fost obţinut recent în cadrul proiectului CMS (Compact Muon Solenoid) de la Marele Accelerator de Hadroni (LHC) de la Geneva: pentru prima dată au fost măsuraţi împreună trei bosoni masivi în coliziuni de mare energie proton-proton.
În cadrul modelului standard al fizicii particulelor elementare, pe lângă particulele de materie, precum quarcurile care compun protonii şi neutronii, electronii şi neutrinii, există şi particulele „purtătoare de forță”, adică particule care mediază interacţiunile între particulele de materie. Printre aceste particule se număra fotonii, care sunt cei care mediază interacţiunea electromagnetică, gluonii, responsabili pentru interacţiunea nucleară tare, şi bosonii intermediari grei, particulele W şi Z, care au de-a face cu interacţiunea nucleară slabă. Studiul acestor intermediari ai interacţiunilor este extrem de important, întrucât ne ajută să înţelegem care sunt legile care guvernează universul.
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
Observatorul spațial Planck / ESA (operațional între 2009 și 2013)
Folosind date furnizate de Observatorul spațial Planck al ESA referitoare la radiația cosmică de fond, o echipă internațională de cercetători a observat indicii ale unei noi fizici. Cercetătorii au creat o nouă metodă de măsurare a unghiului de polarizare a acestei radiații primordiale prin compararea acesteia cu emisiile de lumină ale prafului din galaxia noastră, Calea Lactee. Deși semnalul nu este detectat cu suficientă precizie pentru a trage concluzii certe, acesta indică faptul că materia întunecată sau energia întunecată provoacă o încălcare a așa-numitei „simetrii de paritate” (cu o probabilitate de 99,2%, spun fizicienii).
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
Viaţa unei stele se bazează pe procese de fuziune nucleară, în care elementele chimice uşoare, precum hidrogenul, sunt transformate în elemente chimice mai grele. Pentru prima dată un astfel de proces, ciclu CNO (carbon-nitrogen-oxygen), a fost observat în cadrul proiectului BOREXINO (laboratorul subteran de la Gran Sasso) prin măsurarea neutrinilor emişi în cadrul ciclului CNO care are loc în Soare.
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu
Quarcul top - produs la CERN, ca urmare a interacțiunilor dintre protoni și nuclee de atomi de plumb
În imagine: un proton intră în coliziune cu un nucleu de plumb, dând naştere unei avalanşe de particule în interiorul detectorului ALICE. Proiectele ATLAS, CMS şi LHCb au înregistrat şi ele coliziunile. Credit: Alice/CERN
Quarcul top este cea mai grea particulă din modelul standard şi, prin urmare, are o viaţă extrem de scurtă. Pentru a-l genera este nevoie de multă energie. Pentru prima dată, în cadrul unui experiment de la CERN, CMS, s-au obţinut dovezi ale producerii acestui quarc în coliziuni de nuclee de atomi de plumb. Acest studiu ne va permite să obţinem informaţii despre primele clipe ale universului, când acesta era o supă de quarcuri şi gluoni.
- Detalii
- Scris de: Cătălina Curceanu
- Categorie: Blog Cătălina Oana Curceanu